Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Malar J ; 23(1): 77, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486288

RESUMO

BACKGROUND: Pyrethroid-based indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) have been employed as key vector control measures against malaria in Namibia. However, pyrethroid resistance in Anopheles mosquitoes may compromise the efficacy of these interventions. To address this challenge, the World Health Organization (WHO) recommends the use of piperonyl butoxide (PBO) LLINs in areas where pyrethroid resistance is confirmed to be mediated by mixed function oxidase (MFO). METHODS: This study assessed the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to WHO tube bioassays with 4% DDT and 0.05% deltamethrin insecticides. Additionally, the study explored the effect of piperonyl butoxide (PBO) synergist by sequentially exposing mosquitoes to deltamethrin (0.05%) alone, PBO (4%) + deltamethrin (0.05%), and PBO alone. The Anopheles mosquitoes were further identified morphologically and molecularly. RESULTS: The findings revealed that An. gambiae sensu stricto (s.s.) (62%) was more prevalent than Anopheles arabiensis (38%). The WHO tube bioassays confirmed resistance to deltamethrin 0.05% in the Oshikoto, Kunene, and Kavango West regions, with mortality rates of 79, 86, and 67%, respectively. In contrast, An. arabiensis displayed resistance to deltamethrin 0.05% in Oshikoto (82% mortality) and reduced susceptibility in Kavango West (96% mortality). Notably, there was reduced susceptibility to DDT 4% in both An. gambiae s.s. and An. arabiensis from the Kavango West region. Subsequently, a subsample from PBO synergist assays in 2020 demonstrated a high proportion of An. arabiensis in Oshana (84.4%) and Oshikoto (73.6%), and 0.42% of Anopheles quadriannulatus in Oshana. Non-amplifiers were also present (15.2% in Oshana; 26.4% in Oshikoto). Deltamethrin resistance with less than 95% mortality, was consistently observed in An. gambiae s.l. populations across all sites in both 2020 and 2021. Following pre-exposure to the PBO synergist, susceptibility to deltamethrin was fully restored with 100.0% mortality at all sites in 2020 and 2021. CONCLUSIONS: Pyrethroid resistance has been identified in An. gambiae s.s. and An. arabiensis in the Kavango West, Kunene, and Oshikoto regions, indicating potential challenges for pyrethroid-based IRS and LLINs. Consequently, the data highlights the promise of pyrethroid-PBO LLINs in addressing resistance issues in the region.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , DDT , Namíbia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos
2.
medRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37790419

RESUMO

Malaria elimination interventions in low-transmission settings aim to extinguish hot spots and prevent transmission to nearby areas. In malaria elimination settings, the World Health Organization recommends reactive, focal interventions targeted to the area near malaria cases shortly after they are detected. A key question is whether these interventions reduce transmission to nearby uninfected or asymptomatic individuals who did not receive interventions. Here, we measured direct effects (among intervention recipients) and spillover effects (among non-recipients) of reactive, focal interventions delivered within 500m of confirmed malaria index cases in a cluster-randomized trial in Namibia. The trial delivered malaria chemoprevention (artemether lumefantrine) and vector control (indoor residual spraying with Actellic) separately and in combination using a factorial design. We compared incidence, infection prevalence, and seroprevalence between study arms among intervention recipients (direct effects) and non-recipients (spillover effects) up to 3 km away from index cases. We calculated incremental cost-effectiveness ratios accounting for spillover effects. The combined chemoprevention and vector control intervention produced direct effects and spillover effects. In the primary analysis among non-recipients within 1 km from index cases, the combined intervention reduced malaria incidence by 43% (95% CI 20%, 59%). In secondary analyses among non-recipients 500m-3 km from interventions, the combined intervention reduced infection by 79% (6%, 95%) and seroprevalence 34% (20%, 45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 37%. Our findings provide the first evidence that targeting hot spots with combined chemoprevention and vector control interventions can indirectly benefit non-recipients up to 3 km away.

3.
BMJ Open ; 12(6): e049050, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738650

RESUMO

OBJECTIVES: To estimate the cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in a low endemic setting. SETTING: The study was part of a 2×2 factorial design cluster randomised controlled trial within the catchment area of 11 primary health facilities in Zambezi, Namibia. PARTICIPANTS: Cost and outcome data were collected from the trial, which included 8948 community members that received interventions due to their residence within 500 m of malaria index cases. OUTCOME MEASURES: The primary outcome was incremental cost effectiveness ratio (ICER) per in incident case averted. ICER per prevalent case and per disability-adjusted life years (DALY) averted were secondary outcomes, as were per unit interventions costs and personnel time. Outcomes were compared as: (1) rfMDA versus RACD, (2) RAVC versus no RAVC and (3) rfMDA+RAVC versus RACD only. RESULTS: rfMDA cost 1.1× more than RACD, and RAVC cost 1.7× more than no RAVC. Relative to RACD only, the cost of rfMDA+RAVC was double ($3082 vs $1553 per event). The ICERs for rfMDA versus RACD, RAVC versus no RAVC and rfMDA+RAVC versus RACD only were $114, $1472 and $842, per incident case averted, respectively. Using prevalent infections and DALYs as outcomes, trends were similar. The median personnel time to implement rfMDA was 20% lower than for RACD (30 vs 38 min per person). The median personnel time for RAVC was 34 min per structure sprayed. CONCLUSION: Implemented alone or in combination, rfMDA and RAVC were cost effective in reducing malaria incidence and prevalence despite higher implementation costs in the intervention compared with control arms. Compared with RACD, rfMDA was time saving. Cost and time requirements for the combined intervention could be decreased by implementing rfMDA and RAVC simultaneously by a single team. TRIAL REGISTRATION NUMBER: NCT02610400; Post-results.


Assuntos
Malária , Administração Massiva de Medicamentos , Análise Custo-Benefício , Humanos , Malária/diagnóstico , Malária/epidemiologia , Malária/prevenção & controle , Namíbia/epidemiologia , Projetos de Pesquisa
4.
Lancet ; 395(10233): 1361-1373, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334702

RESUMO

BACKGROUND: In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS: We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS: Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30·8 per 1000 person-years (95% CI 12·8-48·7) in the clusters that received rfMDA versus 38·3 per 1000 person-years (23·0-53·6) in the clusters that received RACD; 30·2 per 1000 person-years (15·0-45·5) in the clusters that received RAVC versus 38·9 per 1000 person-years (20·7-57·1) in the clusters that did not receive RAVC; and 25·0 per 1000 person-years (5·2-44·7) in the clusters that received rfMDA plus RAVC versus 41·4 per 1000 person-years (21·5-61·2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0·52 [95% CI 0·16-0·88], p=0·009), lower in clusters receiving RAVC than in those that did not (0·48 [0·16-0·80], p=0·002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0·26 [0·10-0·68], p=0·006). No serious adverse events were reported. INTERPRETATION: In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING: Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/prevenção & controle , Administração Massiva de Medicamentos/métodos , Controle de Mosquitos , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Análise por Conglomerados , Humanos , Malária Falciparum/epidemiologia , Controle de Mosquitos/métodos , Namíbia/epidemiologia , Plasmodium falciparum , Estudos Soroepidemiológicos
5.
Elife ; 82019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30938286

RESUMO

Local and cross-border importation remain major challenges to malaria elimination and are difficult to measure using traditional surveillance data. To address this challenge, we systematically collected parasite genetic data and travel history from thousands of malaria cases across northeastern Namibia and estimated human mobility from mobile phone data. We observed strong fine-scale spatial structure in local parasite populations, providing positive evidence that the majority of cases were due to local transmission. This result was largely consistent with estimates from mobile phone and travel history data. However, genetic data identified more detailed and extensive evidence of parasite connectivity over hundreds of kilometers than the other data, within Namibia and across the Angolan and Zambian borders. Our results provide a framework for incorporating genetic data into malaria surveillance and provide evidence that both strengthening of local interventions and regional coordination are likely necessary to eliminate malaria in this region of Southern Africa.


Assuntos
Doenças Transmissíveis Importadas/epidemiologia , Transmissão de Doença Infecciosa , Migração Humana , Malária/epidemiologia , Plasmodium/isolamento & purificação , Topografia Médica , Doenças Transmissíveis Importadas/parasitologia , Monitoramento Epidemiológico , Técnicas de Genotipagem , Humanos , Malária/parasitologia , Epidemiologia Molecular , Namíbia/epidemiologia , Plasmodium/classificação , Plasmodium/genética
6.
Malar J ; 17(1): 480, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567537

RESUMO

BACKGROUND: Subpatent malaria infections, or low-density infections below the detection threshold of microscopy or standard rapid diagnostic testing (RDT), can perpetuate persistent transmission and, therefore, may be a barrier for countries like Namibia that are pursuing malaria elimination. This potential burden in Namibia has not been well characterized. METHODS: Using a two-stage cluster sampling, cross-sectional design, subjects of all age were enrolled during the end of the 2015 malaria transmission season in Zambezi region, located in northeast Namibia. Malaria RDTs were performed with subsequent gold standard testing by loop-mediated isothermal amplification (LAMP) using dried blood spots. Infection prevalence was measured and the diagnostic accuracy of RDT calculated. Relationships between recent fever, demographics, epidemiological factors, and infection were assessed. RESULTS: Prevalence of Plasmodium falciparum malaria infection was low: 0.8% (16/1919) by RDT and 2.2% (43/1919) by LAMP. All but one LAMP-positive infection was RDT-negative. Using LAMP as gold standard, the sensitivity and specificity of RDT were 2.3% and 99.2%, respectively. Compared to LAMP-negative infections, a higher portion LAMP-positive infections were associated with fever (45.2% vs. 30.4%, p = 0.04), though 55% of infections were not associated with fever. Agricultural occupations and cattle herding were significantly associated with LAMP-detectable infection (Adjusted ORs 5.02, 95% CI 1.77-14.23, and 11.82, 95% CI 1.06-131.81, respectively), while gender, travel, bed net use, and indoor residual spray coverage were not. CONCLUSIONS: This study presents results from the first large-scale malaria cross-sectional survey from Namibia using molecular testing to characterize subpatent infections. Findings suggest that fever history and standard RDTs are not useful to address this burden. Achievement of malaria elimination may require active case detection using more sensitive point-of-care diagnostics or presumptive treatment and targeted to high-risk groups.


Assuntos
Malária Falciparum/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Testes Diagnósticos de Rotina , Feminino , Humanos , Lactente , Recém-Nascido , Malária Falciparum/diagnóstico , Masculino , Pessoa de Meia-Idade , Namíbia/epidemiologia , Técnicas de Amplificação de Ácido Nucleico , Prevalência , Fatores de Risco , Sensibilidade e Especificidade , Adulto Jovem
7.
PLoS One ; 13(12): e0206848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540744

RESUMO

Malaria cases sometimes go undetected using RDTs due to their inaccurate use, poor storage conditions and failure to detect low parasitaemia (<50parasites/µL). This could result in continuous transmission of malaria and sustenance of parasite reservoirs. Molecular diagnostic tools are more sensitive and specific than RDTs in the detection of plasmodium parasites. However, the Polymerase Chain Reaction (PCR) is not routinely used because equipment and reagents are expensive and requires highly skilled personnel. Loop-mediated isothermal amplification (LAMP) is a relatively new molecular diagnostic tool for malaria with all the advantages of PCR (sensitive and specific) without the mentioned disadvantages. However, it has not been evaluated extensively as a point of care diagnostic in the field. One hundred and fifteen used RDTs were collected from health facilities in Northern Namibia in a blind study and PCR and LAMP were used to determine the presence of Plasmodium DNA. The sensitivities and PPV were 40.91% and 90% respectively for RDTs, 72.73% and 100% respectively for PCR with LAMP as the golden standard. In low malaria transmission settings, LAMP can be also be considered for use as a surveillance tool to detect all sources of malaria and determine proportion of low parasitaemia infections in order to eliminate them.


Assuntos
DNA de Protozoário , Malária , Plasmodium/crescimento & desenvolvimento , Reação em Cadeia da Polimerase/métodos , DNA de Protozoário/sangue , DNA de Protozoário/genética , Feminino , Humanos , Malária/sangue , Malária/diagnóstico , Malária/genética , Masculino , Namíbia , Sensibilidade e Especificidade
8.
Malar J ; 17(1): 255, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986717

RESUMO

BACKGROUND: As malaria transmission decreases, the proportion of infections that are asymptomatic at any given time increases. This poses a challenge for diagnosis as routinely used rapid diagnostic tests (RDTs) miss asymptomatic malaria cases with low parasite densities due to poor sensitivity. Yet, asymptomatic infections can contribute to onward transmission of malaria and therefore act as infectious reservoirs and perpetuate malaria transmission. This study compared the performance of RDTs to loop-mediated isothermal amplification (LAMP) in the diagnosis of malaria during reactive active case detection surveillance. METHODS: All reported malaria cases in the Engela Health District of Namibia were traced back to their place of residence and persons living within the four closest neighbouring houses to the index case (neighbourhood) were tested for malaria infection with RDTs and dried blood spots (DBS) were collected. LAMP and nested PCR (nPCR) were carried out on all RDTs and DBS. The same procedure was followed in randomly selected control neighbourhoods. RESULTS: Some 3151 individuals were tested by RDT, LAMP and nPCR. Sensitivity of RDTs and LAMP were 9.30 and 95.50%, respectively, and specificities were 99.27 and 99.92%, respectively, compared to nPCR. LAMP carried out on collected RDTs showed a sensitivity and specificity of 95.35 and 99.85% compared to nPCR carried out on DBS. There were 2 RDT samples that were negative by LAMP but the corresponding DBS samples were positive by PCR. CONCLUSION: The study showed that LAMP had the equivalent performance as nPCR for the identification of Plasmodium falciparum infection. Given its relative simplicity to implement over more complex and time-consuming methods, such as PCR, LAMP is particularly useful in elimination settings where high sensitivity and ease of operation are important.


Assuntos
Testes Diagnósticos de Rotina/métodos , Erradicação de Doenças , Malária Falciparum/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/isolamento & purificação , Vigilância da População/métodos , Namíbia , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
9.
BMJ Open ; 8(1): e019294, 2018 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-29374672

RESUMO

INTRODUCTION: To interrupt malaria transmission, strategies must target the parasite reservoir in both humans and mosquitos. Testing of community members linked to an index case, termed reactive case detection (RACD), is commonly implemented in low transmission areas, though its impact may be limited by the sensitivity of current diagnostics. Indoor residual spraying (IRS) before malaria season is a cornerstone of vector control efforts. Despite their implementation in Namibia, a country approaching elimination, these methods have been met with recent plateaus in transmission reduction. This study evaluates the effectiveness and feasibility of two new targeted strategies, reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in Namibia. METHODS AND ANALYSIS: This is an open-label cluster randomised controlled trial with 2×2 factorial design. The interventions include: rfMDA (presumptive treatment with artemether-lumefantrine (AL)) versus RACD (rapid diagnostic testing and treatment using AL) and RAVC (IRS with Acellic 300CS) versus no RAVC. Factorial design also enables comparison of the combined rfMDA+RAVC intervention to RACD. Participants living in 56 enumeration areas will be randomised to one of four arms: rfMDA, rfMDA+RAVC, RACD or RACD+RAVC. These interventions, triggered by index cases detected at health facilities, will be targeted to individuals residing within 500 m of an index. The primary outcome is cumulative incidence of locally acquired malaria detected at health facilities over 1 year. Secondary outcomes include seroprevalence, infection prevalence, intervention coverage, safety, acceptability, adherence, cost and cost-effectiveness. ETHICS AND DISSEMINATION: Findings will be reported on clinicaltrials.gov, in peer-reviewed publications and through stakeholder meetings with MoHSS and community leaders in Namibia. TRIAL REGISTRATION NUMBER: NCT02610400; Pre-results.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Inseticidas , Malária/prevenção & controle , Administração Massiva de Medicamentos , Controle de Mosquitos/métodos , Mosquitos Vetores , Adulto , Animais , Combinação Arteméter e Lumefantrina , Criança , Combinação de Medicamentos , Feminino , Humanos , Malária/tratamento farmacológico , Malária/transmissão , Masculino , Namíbia , Compostos Organotiofosforados , Projetos de Pesquisa , Características de Residência
10.
PLoS One ; 12(8): e0180845, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28820883

RESUMO

BACKGROUND: Reactive case detection (RACD) around passively detected malaria cases is a strategy to identify and treat hotspots of malaria transmission. This study investigated the unproven assumption on which this approach is based, that in low transmission settings, infections cluster over small scales. METHODS: A prospective case-control study was conducted between January 2013 and August 2014 in Ohangwena and Omusati regions in north central Namibia. Patients attending health facilities who tested positive by malaria rapid diagnostic test (RDT) (index cases) were traced back to their home. All occupants of index case households (n = 116 households) and surrounding households (n = 225) were screened for Plasmodium infection with a rapid diagnostic test (RDT) and loop mediated isothermal amplification (LAMP) and interviewed to identify risk factors. A comparison group of 286 randomly-selected control households was also screened, to compare infection levels of RACD and non-RACD households and their neighbours. Logistic regression was used to investigate spatial clustering of patent and sub-patent infections around index cases and to identify potential risk factors that would inform screening approaches and identify risk groups. Estimates of the impact of RACD on onward transmission to mosquitoes was made using previously published figures of infection rates. RESULTS: Prevalence of Plasmodium falciparum infection by LAMP was 3.4%, 1.4% and 0.4% in index-case households, neighbors of index case households and control households respectively; adjusted odds ratio 6.1 [95%CI 1.9-19.5] comparing case households versus control households. Using data from Engela, neighbors of cases had higher odds of infection [adjusted OR 5.0 95%CI 1.3-18.9] compared to control households. All infections identified by RDTs were afebrile and RDTs identified only a small proportion of infections in case (n = 7; 17%) and control (0%) neighborhoods. Based on published estimates of patent and sub-patent infectiousness, these results suggest that infections missed by RDTs during RACD would allow 50-71% of infections to mosquitoes to occur in this setting. CONCLUSION: Malaria infections cluster around passively detected cases. The majority of infections are asymptomatic and of densities below the limit of detection of current RDTs. RACD using standard RDTs are unlikely to detect enough malaria infections to dramatically reduce transmission. In low transmission settings such as Namibia more sensitive field diagnostics or forms of focal presumptive treatment should be tested as strategies to reduce malaria transmission.


Assuntos
Malária/epidemiologia , Vigilância da População , Adolescente , Adulto , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Humanos , Malária/prevenção & controle , Masculino , Pessoa de Meia-Idade , Namíbia/epidemiologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...